032/2A CHEMISTRY

MARKING SCHEME

1. Pipette used 25.00 cm³ (*01mark*)

Table of results (04 marks)

Experiment	Pilot	1	2	3
Final readings (cm ³)	20.10	40.00	20.00	40.00
Initial reading (cm ³)	0.00	20.00	0.00	20.00
Volume used (cm ³)	22.10	20.00	20.00	20.00

a). Average volume (volume of acid) =
$$\frac{v + v^2 + v^3}{3}$$
 (1/2 mark)

Average volume =
$$\frac{20.10+20.00+20.00}{3}$$
 (1/2 mark)

$$=\frac{60.00}{3}$$
 (1/2 mark)

Average volume (volume of acid) = 20.00 cm^3 (1/2 mark)

b). 20.00 cm³ of A required 25.00 cm³ B for complete reaction (01mark@1/2 mark)

c).
$$2HCl(aq) + Na_2CO_3(aq) \rightarrow 2NaCl(aq) + H_2O(l) + CO_2(g)$$
 (01mark)

d). Ionic equation:

$$2HCl\left(aq\right)+Na_{2}CO_{3}\left(aq\right)\rightarrow2NaCl\left(aq\right)+H_{2}O(l)+CO_{2}\left(g\right)$$

$$2H^{+}(aq) \ + 2Cl^{-}(aq) \ + \ 2Na + (aq) \ + \ CO_{3}{}^{2-}(aq) \ \rightarrow 2Na^{+}(aq) \ + \ 2Cl^{-}(aq) \ + \ H_{2}O(l) \ + \ CO_{2}(g)$$

$$2H^{+}(aq) + \frac{2Cl^{-}(aq)}{2} + \frac{2Na^{+}(aq)}{2} + CO_{3}^{2-}(aq) \rightarrow \frac{2Na^{+}(aq)}{2} + 2Cl^{-}(aq) + H_{2}O(1) + CO_{2}(g)$$

 $2H^{+}(aq) + CO_{3}^{2-}(aq) \rightarrow H_{2}O(1) + CO_{2}(q) (02marks@1/2 mark)$

e). Concentration of A in mole per litre.

Mr of HCl =
$$(1x1) + (1x 35.5)$$

$$= 36.5g/mol$$

(01marks)

Molarity =
$$\frac{\text{concentration}}{\text{molar mass}}$$
 (1/2mark)

Concentration of $A = 3.65 g/dm^3$

Molarity =
$$\frac{3.65 \text{ g/dm3}}{36.5 g/mol}$$

= 0.1 M

Concentration of A in mol/dm³ is 0.1M (02marks)

f). (i). Concentration of B in mol/dm³

Data:

Volume of acid (Va) = 20.00 cm^3

Volume of base (Vb) = 25.00 cm^3

Molarity of A acid (Ma) = 0.1M (1/2 mark)

Number of moles of acid $(n_a) = 1 \text{mol}$

Number of moles of base $(n_b) = 2 \text{mol}$

Formula:

$$\frac{\text{MaVa}}{\text{MbVb}} = \frac{\text{Na}}{\text{Nb}} \quad (1/2 \text{ mark})$$

Calculations:

$$\frac{0.1 \text{M x } 20.00 \text{cm}3}{\text{Mb x } 25.00 \text{ cm}3} = \frac{2}{1}$$

$$Mb = 0.04M$$

Concentration of B in mol/litre= 0.04M (02marks)

ii. Concentration of B in g/dm³

Formula:

Molarity =
$$\frac{\text{concentration}}{\text{molar mass}}$$
 (1/2mark)

Molar mass of
$$Na_2CO_3 = (2x23) + (1x12) + (3x16)$$

=106g/mol

Concentration of pure (g/dm³)= Molarity(M) x Molar mass (g/mol)

$$= 0.04 \text{mol/dm}^3 \times 106 \text{g/mol} (1/2 \text{ mark})$$

Concentration of pure Na₂CO₃ (g/dm³) = 4.24g/dm³ (01 1 /₂mark)

g). The percentage purity of Na₂CO₃

Concentration of pure Na₂CO₃ $\frac{\text{mass}(g)}{\text{volume } (dm3)}$

 $250 \text{cm}^3 = 250/1000 = 0.25 \text{dm}^3$

Concentration of impure Na₂CO₃ $\frac{1.2g}{0.25(dm3)}$

 $= 4.8 g/dm^3$ (02marks)

Percentage purity=
$$\frac{\text{concentration of pure}(\frac{g}{\text{dm3}})}{\text{Concentration of impure}(\frac{g}{\text{dm3}})}$$
 x 100% (1/2 mark)

Percentage purity =
$$\frac{4.24g/dm3}{4.80g/dm3}$$
 X 100%

The percentage purity = 88.33% (02mark)

Question.2

S/N	Experiments	Observation	Inference
(a).	Appearance of sample R was observed. (i). Color	White (01 mark)	NH ₄ ⁺ Na ⁺ Ca ²⁺ , Zn ²⁺ Pb ²⁺ may be present (01 mark)
	(ii). Texture	Crystalline form (01 mark)	NO ₃ ⁻ , SO ₄ ²⁻ , Cl ⁻ may be present (01 mark)
(b).	To a small portion of a dry sample in a test tube enough amount of distilled water was added.	Soluble forming a colorless solution (01 mark)	NH ₄ ⁺ Na ⁺ NO ₃ ⁻ may be present (01 mark)
(c).	A small portion of a dry sample in a dry test tube, was heated gently then strongly.	Cracking sound with brown gas was evolved.	NO ₃ ⁻ of Pb ²⁺ may be present. (01 mark)

(d).	To a small portion of a dry sample in a test tube concentrated H ₂ SO ₄ acid was added.	Residue reddish brown when hot and yellow when cold was observed. (01 mark) Brown fumes were evolved, which turn moist blue litmus paper red and intensify on addition of copper turnings. (01 mark)	Pb ²⁺ may be present. (01 mark) NO ₃ ⁻ may be present. (01 mark)
(e).	To a small amount of a sample solution portion add NaOH till in excess.	White precipitate soluble in excess was observed. (01 mark)	Pb ²⁺ ,Zn ²⁺ may be present. (01 mark)
	(f). To another small portion aqueous ammonium solution was added slowly till excess	White precipitates insoluble in excess were observed (01 mark)	Pb ²⁺ may be present. (01 mark)
_	(g) To the other portion potassium iodide was added till in excess.	Yellow precipitates which disappears on warming and reappear on cooling (01 mark)	Pb ²⁺ confirmed. (01 mark)
	(h). To another portion of the solution of sample R in a test tube, add copper turnings was added followed by concentrated Sulpuric acid then warm.	Brown fumes evolved (01 mark)	NO ₃ ⁻ Confirmed (01 mark)

Conclusion

- (a) (i) The cation in sample R is Pb²⁺ (01 mark)
- (ii). The anion in R is **NO**₃- (01 mark)
- (ii) The name of sample R is Lead (II) nitrate (01 mark)
- (iii) The chemical formula of sample R is Pb(NO₃)₂ (01 mark)
- (iv). $2Pb(NO_3)_2(s) \rightarrow 2PbO(s) + 4NO_2(g) + O_2(g)(01 \text{ mark})$