032/2B CHEMISTRY 2

MARKING SCHEME

1. Pipette used 20.00 cm³

(01Mark) Table of

results

(04marks)

Experiment	Pilot	1	2	3
Final readings (cm ³)	10.20	20.00	30.00	40.00
Initial reading (cm ³)	0.00	10.00	20.00	30.00
Volume used (cm ³)	10.20	10.00	10.00	10.00

NB: For a pipette of 25cm³ capacity then the value of Va will be 12.5cm³

Table and labeling (01mark)

Two decimal place (01marks)

Accuracy (02marks)

a).(i). Average volume (volume of acid) = $\frac{v_1+v_2+v_3}{3}$ (1/2 mark)

Average volume =
$$\frac{10.00+10.00+10.00}{3}$$
 (1/2 mark)

$$\frac{=30.00}{3}$$
 (1/2 mark)

Average volume (volume of acid) = 10.00 cm^3 (1/2 mark)

(ii). The colour change at the end point was from Yellow to Pink (1/2)

(iii). 10.00 cm³ of Q required 20.00 cm³ G for complete reaction (01mark@1/2 mark)

(iv).
$$H_2SO_4$$
 (aq) + 2KOH(aq) $\rightarrow K_2SO_4$ (aq) + $H_2O(1)$ (01mark)

b). (i). Concentration of Q and G in mole per litre:

$$Md = \frac{McVc}{Vd} (1 \text{ mark})$$

$$Md = \frac{0.5 \times 20}{100}$$

= 0.1 M (01 marks)

$$\frac{\text{MaVa}}{\text{MbVb}} = \frac{\text{na}}{\text{nb}} \quad (1/2 \text{mark})$$

Volume of acid (Va) = 10.00 cm^3

Volume of base (vb) = 20.00 cm^3

Molarity of acid (Ma) = 0.1M (1/2 mark)

Number of moles of acid (na)= 2mol

Number of moles of base $(n_b) = 1 \text{mol}$

$$\frac{0.1 \text{M} \times 10.00 \text{cm}^3}{\text{Mh} \times 20.00 \text{ cm}^3} = \frac{1}{2}$$
 (01 marks)

$$Mb = 0.1M (1/2)$$

(ii). The molar mass of G

Molarity =
$$\frac{\text{concentration}}{\text{molar mass}}$$
 (1/2 mark)

 $200 \text{cm}^3 / 1000 = 0.2 \text{dm}^3$

Concentration of pure XOH $\frac{1.12g}{0.2(dm3)}$ (1 mark)

$$= 5.6g/dm^3$$

Molar mass(g/mol) =
$$\frac{\text{concentration}}{\text{molaity(M)}}$$
 (1 mark)

Molar mass
$$(g/dm3) = \frac{5.6 \text{ g/dm3}}{0.1M}$$

(iii). Atomic mass of Xand identity of X:

$$XOH = 56$$

$$X+16+1=56$$

X=39 (02 marks)

- (iv). X is potassium. (01 marks)
- (v). Electronic configuration of X = 2.8.8.1 (01 marks)

Question.2

a) Table of results

(04marks)

Exp No	Volume (v)	Volume	Concentration	Time (t) for	Rate of
	of R_1 (cm ³)	of	of solution R ₁	the cross to	reaction (1/t)
		water	after adding	disappear in	in (sec ⁻¹)
		in cm ³	water in (mol	sec (s)	
			dm^{-3})		
1	30	20	0.12	36	0.0278
2	25	25	0.10	54	0.0185
3	20	30	0.08	74	0.0135
4	15	35	0.06	118	0.0085
5	10	40	0.04	210	0.0048

> Experiment 1

McVc = Mdvd

0.2 x 30

 $M_d \times 50$,

 $M_d = 0.12M$

> Experiment 2

McVc = MdVd

0.2 x 25

 $M_d \times 50$

 $M_d=0.10M$

> Experiment 3

McVc = MdVd

 0.2×20

 $M_d \times 50$,

 $M_d = 0.08M$

> Experiment 4

McVc = MdVd

$$McVc = MdVd$$

$$M_d \times 50$$

$$M_d = 0.04M$$
 (@ 2 marks)

- b) $Na_2S_2O_{3(aq)+} 2HCl_{(aq)} \rightarrow 2NaCl_{(aq)} + H_2O_{(l)+}S_{(s)+}SO_{2(g)}$ (02 marks) $S_2O_3^{2-}(aq) + 2H^+ \rightarrow H_2O_{(1)} + SO_{2(g)} + S_{(s)}$
- c) The formation of a solid **Sulphur** is the one that obscured the solution and the smell experienced chocking and irritating is due to the formation of a gas which is essential in making sulphuric acid Sulphur dioxide gas (02 marks)
- d) Graph plotted below
- (e) The concentration is directly proportional to the rate of reaction.

(01 marks)

A graph of conc. of Na₂S₂O₃ against the rate of reaction, $\frac{1}{t}$ in sec⁻¹ (01 mark)

